Extending PSL with Fuzzy Quantifiers

نویسندگان

  • Golnoosh Farnadi
  • Stephen H. Bach
  • Marie-Francine Moens
  • Lise Getoor
  • Martine De Cock
چکیده

Golnoosh Farnadi, Stephen H. Bach, Marie-Francine Moens, Lise Getoor, Martine De Cock Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium, Department of Computer Science, Katholieke Universiteit Leuven, Belgium, Statistical Relational Learning Group, University of Maryland, USA, University of California, Santa Cruz, USA, Center for Data Science, University of Washington Tacoma, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMBINING FUZZY QUANTIFIERS AND NEAT OPERATORS FOR SOFT COMPUTING

This paper will introduce a new method to obtain the order weightsof the Ordered Weighted Averaging (OWA) operator. We will first show therelation between fuzzy quantifiers and neat OWA operators and then offer anew combination of them. Fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. In using neat operators,the ordering of the inputs is not...

متن کامل

Fuzzy Quantifiers, Multiple Variable Binding and Branching Quantification

Lindström [1] introduced a very powerful notion of quantifiers, which permits multi-place quantification and the simultaneous binding of several variables. ‘Branching’ quantifification was found to be useful by linguists e.g. for modelling reciprocal constructions like “Most men and most women admire each other”. Westerståhl [2] showed how to compute the three-place Lindström quantifier for “Q1...

متن کامل

Statistical Relational Learning with Soft Quantifiers

Quantification in statistical relational learning (SRL) is either existential or universal, however humans might be more inclined to express knowledge using soft quantifiers, such as “most” and “a few”. In this paper, we define the syntax and semantics of PSL, a new SRL framework that supports reasoning with soft quantifiers, and present its most probable explanation (MPE) inference algorithm. ...

متن کامل

On the Semantic Relationship between Probabilistic Soft Logic and Markov Logic

Markov Logic Networks (MLN) and Probabilistic Soft Logic (PSL) are widely applied formalisms in Statistical Relational Learning, an emerging area in Artificial Intelligence that is concerned with combining logical and statistical AI. Despite their resemblance, the relationship has not been formally stated. In this paper, we describe the precise semantic relationship between them from a logical ...

متن کامل

Basic Properties of L-fuzzy Quantifiers of the Type <1> Determined by Fuzzy Measures

The aim of this paper is to study monadic L-fuzzy quantifiers of the type 〈1〉 determined by fuzzy measures. These fuzzy quantifiers are defined using a novel notion of ⊗-fuzzy integral. Several semantic properties of these L-fuzzy quantifiers are studied. Keywords— fuzzy integral, fuzzy logic, fuzzy measure, fuzzy quantifier, generalized quantifier

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014